Test Driven Development of
Scientific Models

Outline

Familiar stories

Development

Testing

Test Driven Development

TDD and Scientific Computing

pFUnit — a Testing Framework for Fortran

Familiar Stories

9/27/10 TDD - SIVO

The Marathon

The Chain Reaction

© Original Artist
Reproduction rights obtainable froms

wwwp‘art,gj;qgfp?kféom N Po

?/\/((c s g&m
7|
/

9/27/10 TDD - SIV(SR

The Investigation

011110100110010
1001100111010100

9/27/10 TDD -

The High Wire Ac

9/27/10 TDD - SIVO

Development

* Add code
* Fix bug
* Port

The Development Cycle

(N

Implement

Verify

S

* Compiles

* Runs
* Plausiblie

« Correct?

Natural Time Scales

* Design

* Implementation
 Compilation

* Batch

* Execution

* Analysis

9/27/10

) 10
/- FS 1€ “" 17
-7 4 22 23 24

TDD - SIVO

Size of Implementation Step

* Risk of error grows with size of change
* Size of change grows with cost of verification

e Conclusion:

— Optimize development cycle to enable smaller
changes per iteration

Test Harness

* A collection of tests that constrain system
* Detects unintended changes
* Localizes defects

* Improves developer confidence
— Decreases risk from change

9/27/10 TDD - SIVO

Do you write legacy code?

“The main thing that distinguishes legacy code from non-

legacy code is tests, or rather a lack of tests.”

— Michael Feathers
Working Effectively with Legacy Code

Robert C. Martin Series

Lack of tests leads to fear of introducing subtle bugs
and/or changing things inadvertently.

* Programming on a tightrope

* Barrier to involving pure software engineers

EFFECTIVELY
WITH

LEGACY CODE

Michael C. Feathers

Excuses

* Takes too much time to write tests
— Too expensive to maintain tests

* |t takes too long to run the tests
* [tisnot my job
e “Correct” behavior is unknown

http://java.dzone.com/articles/unit-test-excuses

- James Sugrue

What is a Test?

e Abort:

IF (PA(I,J)+PTOP.GT.1200.)
& call stop model('ADVECM: Pressure diagnostic error',1ll)

* Print:

print*, *“loss of mass = ", deltaMass

* Visual inspection / acceptance threshold:

TDD and the Scientific Method

Hypothesis Formulate Test

Experiment Run Tests

Refine Theory Refine source code

Properties of Good Tests

Isolated
* Failure indicates which part of application

Orthogonal
* Any bug only triggers small set of tests

Independent
* Run order does not matter
e Corollary — cannot terminate execution

Small
* Execute quickly; small drain on resources

Automated and repeatable

Anatomy of a Test Procedure

procedure testroo()

Preconditions

¥

Invoke System-under-test

!

Postconditions

¥

Clean Up Resources

Testing Frameworks

* Provide infrastructure to radically simplify:

— Creating test routines (Test cases)
— Running collections of tests (Test suites)
— Summarizing results

e Key feature is collection of “assert” methods
— Used to express expected results
— E.g. assertEqual (120, factorial(5))

* Generally specific to programming language (xUnit)
— Java (JUnit), Python (pyUnit), C++ (cxxUnit, cppUnit)

JUnit - Eclipse

1o
_gUnit
Test class name:

|pruebas ILH || RL‘“ |

[vi Reload classes every run

I U

Runs: 1/1 X Errors: 0 “ Failures: 1
Results:
“ Clase principal{pruebas)Valor lgual a 3 el I Run
~
4 [»]
| X Failures h
junit.framewoark AssertionF ailedError: Valor lgual a 3 sl
at pruehas.runTest(pruebas.java:13)
>
] | ¥

[Finished: 0,031 seconds Exit

T
Junit
Test class name:
junit.samples.AllTests R | || Run |
[vi Reload classes every run
l 1 Ju
Runs: 119/119 X Errors: 0 “ Failures: 0
Results:

[T Al JUnit Tests

@ [junit. samples VectorTest

@ [junit.samples.money.MoneyTest
@ [Framework Tests

4 Test Hierarchy |

<

I

[Finished: 1,219 seconds

Exit

9/27/10 TDD - SIVO

Test Driven Development

YOU ARE NOW ENTERING

A STRESS FREE ZONE

9/27/10 TDD - SIVO

The Short Version

* Use tests to drive development

S

Write a test (make it fail)

Implement code to pass test
Simplify/refactor/eliminate redundancy
Rinse-and-repeat

9/27/10

The TDD Cycle

Focus on Interface

Focus on Algorithm

Implement s Implement
Test Solution
success Run

TDD - SIVO

Tests

Failure/refactor

Example: Linear Interpolation

’/ (X;,Yi)

’/
’/
-

)

)

o

o

9/27/10

TDD - SIVO

Potential Tests

* Bracketing: Findisuchthat X, <=X<X;,4
e Computing node weights:

W,= (X;417X)/ (Xi417%;)

w,=1-w,

* Weighted Sum: Yy =W_ VY. + W VY. 4

Possible Bracketing tests

X.={1,2,3}; x=1.5; return:
X.={1,2,3}; x=2.5; return: i
X.={1,2,3}; x=2.0; return:i
X.={1,2,3}; x=1.0; return:
X.={1,2,3}; x=3.0; return: i

INC
INO
iNO

INC

ING

ex =1
ex =2
ex=27?77
ex=1
ex=27?77

X.={1,2,3}; x=0.5; out-of-bounds error?
X.={3,2,1}; x=1.5; inverted-order error?

Bracketing: Test 1

* X.={1,2,3}; x=1.5; return:index=1

subroutine testBracketl()
nodes = [1.,2.,3.]
index = getBracket(nodes, 1.5)
call assertEqual(l, index)

end subroutine

function getBracket(nodes, Xx)
return 1
end function

Bracketing: Test 2

* X.={1,2,3}; x=1.5; return:index =2

subroutine testBracket2()
nodes = [l.,2.,3.]
index = getBracket(nodes, 2.5)
call assertEqual(2, index)

end subroutine testBracket?

funtt dorgegBEBretkedefodds, x)
Ho (f =nede{?)} th68es) — 1

return , .
elselfu (nodes(1i+1l) > x) return 1

end.dQ@n 1

encenfilunhetion

end function

Tests for Weights

X.={1,2}; x=1.0; w,=1.0

X.={1,2}; x=2.0; w,=0.0

X.={1,2}; x=1.5; w,;=0.5

X.={1,3}; x=1.5; w,=0.75

X.={1,1}; x=1.0; duplicate-node error

Weights: Test 1

X.={1,2}; x=1.0; w,=1.0

subroutine testWeightl()
[a,b] = [1,2]
weight = computeWeight(a, b, 1.0)
call assertEquals 0, weight)
end subroutine testWeight

subroutine computeWej

return 1.0
end subroutine computeWeight

Duplication

Interpolation: Test 1

e ConstantyY

subroutine testInterpolatel ()
nodes = [[1,1],[2,1],[4,1]]
y = 1lnterpolate(nodes, 3.0)
call assertEqual(1.0, vy)

end subroutine testInterpolatel

function interpolate(nodes, Xx)

y =1
end function interpolate

Interpolation: Test 2

{(2,1),(2,3),(4,1)}; x=3. =>vy(x) =2

subroutine testInterpolatel()
nodes = [[1,1],[2,3],[4,1]]
y = interpolate(nodes, 3.0)
assertEqual (2.0, y, epsilon)

end subroutine testInterpolatel

function interpolate(nodes, x)
1 = getBracket(nodes%xCoord, Xx)
a = computeWeight(xc(i), xc(i+l), x)
b=1-a

return a*nodes(i)%yCoord + b*nodes(i+1l)%yCoord

end function interpolate

TDD Best Practices

Small steps - each iteration < 10 minutes
— Starting over is cheap
— Compilation speed sets lower bound (use —00)

Isolated, orthogonal, small, clear tests

Extremely fast tests — need to run 1000’s
— Each test < 0.001 seconds
— Don’t need % degree resolution to test software

Ruthless refactoring
Check that each test initially fails

Benefits of TDD

High software reliability
Excellent test coverage
Always ready-to-ship
Tests act as maintainabl
documentation

Tests do not decay

Debugging is rare

Benefits of TDD (cont’d)

Reduced stress / improved confidence
Productivity

Predictable schedule

High quality implementation
— Test design requires focus

— Testable code forces
simple orthogonal interfaces

Porting

Anecdotal Testimony

 Many professional SE’s are initially skeptical

— High percentage refuse to go back to “the old way” after
only a few days of exposure.

* Projects that are able to drop bug tracking.

* Can be difficult to sell to management
— “What? More lines of code?”

Not a Panacea

Requires training, practice, and discipline
Need strong tools (framework + refactoring)
Does not invent new algorithms (e.g. FFT)

— No such thing as magic

Maintaining tests can be difficult during a
major re-engineering effort.

— But isn’t the alternative is even worse?!!

TDD and Scientific Computing

Obstacles

Difficult to apply to legacy software
Developers are scientists; not SE’s

Limitations of Fortran

— Weak development tools (but improving)
— Not OO (impacts certain kinds of testing)
— Lack of literature/training materials

Need support for MPIl, multi-dim arrays, etc.
Numerical algorithms/parameterizations

— Small number of analytic solutions
— Specifying accuracy of floating-point results

TDD Experience in SIVO

e Software projects:

— pFUnit, NED, DYNAMO, SMVGEAR,
GTRAJ (C++), Sensor Web (Java/python), Snowfake

e Observations

— Ratio of test code to source code is about 1:1
— Works very well for infrastructure
— Demonstrable improvements in quality

— Learning curve

* 1-2 days for technique
* Weeks/months to wean from old habits

pFUnNIt

Parallel Fortran Unit Testing
Framework

Developed in SIVO using TDD (Clune and Womack)
Supports testing of MPIl-based applications

Extensive support for floating-point and multi-dimensional
arrays

Available via NASA open-source license:
http://sourceforge.net/projects/pfunit

Possibly arrange a hands-on tutorial:

— Contact Carlos Cruz if interested: Carlos.A.Cruz@nasa.gov

References

pFUnit: http://sourceforge.net/projects/pfunit/

— Tutorial materials

https://modelingguru.nasa.gov/docs/DOC-1982
https://modelingguru.nasa.gov/docs/DOC-1983
https://modelingguru.nasa.gov/docs/DOC-1984

TDD Blog:
https://modelingquru.nasa.qgov/blogs/modelingwithtdd

Test-Driven Development: By Example, Kent Beck

Refactoring: Improving the Design of Existing Code,
Martin Fowler

Junit, http://junit.sourceforge.net/

